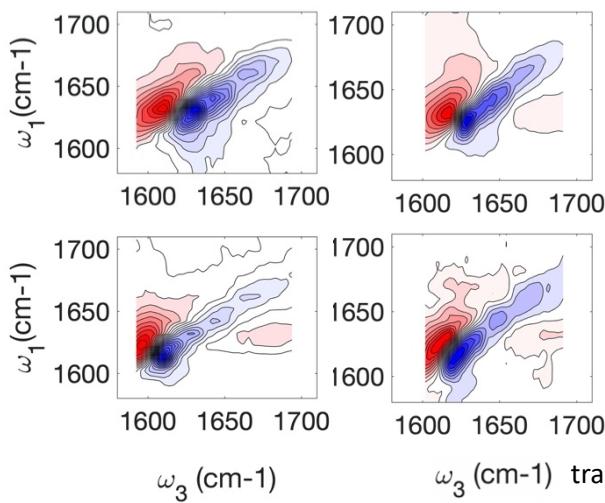


Aggregation dynamics in globular proteins: the infrared spectroscopy point of view

Andrea Lapini

Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale (Università di Parma),


andrea.lapini@unipr.it

European Laboratory for Non-Linear Spectroscopy (LENS)

lapini@lens.unifi.it

The unfolding and aggregation of globular proteins are central to a wide range of biological and physicochemical phenomena, from pathological amyloid formation in neurodegenerative diseases to the controlled self-assembly of functional biomaterials.[2] Understanding how specific molecular interactions, conformational intermediates, and environmental conditions govern aggregation pathways is therefore crucial both for elucidating disease-related misfolding mechanisms and for harnessing protein aggregation as a design principle for novel, tunable protein-based materials.

Infrared (IR) spectroscopy, especially Fourier Transform IR (FTIR) and advanced 2D-IR, excels at tracking globular protein aggregation by analyzing changes in the **Amide I band ($\sim 1650 \text{ cm}^{-1}$)**, revealing shifts from native structures (like α -helices) to aggregated forms, primarily β -sheets, which form intermolecular bonds and are key to amyloid fibrils. [5]

The thermal and pH-dependent aggregation of selected proteins will be described and how can be followed by using a combination of linear and nonlinear spectroscopies. Distinct intermediate states can be identified under acidic and neutral conditions, revealing different structural intermediates that act as precursors to aggregation. [1] Time-resolved spectroscopic techniques can be employed to deconvolve overlapping spectral features, enabling a detailed analysis of aggregation kinetics and the evolution of intermolecular interactions.[6] Furthermore, transition dipoles are an underutilized quantity for probing molecular structures. The transition dipole strengths in an extended system like a protein are modulated by the couplings and thus probe

the structures. Transition dipole strength (TDS) analysis enhances two-dimensional infrared (2D IR) spectroscopy by probing protein structural differences that frequency alone cannot resolve. The aggregation behavior of mixed protein system can also be examined to probe co-aggregation effects and intermolecular coupling in multicomponent protein systems.[1]

[1] Venturi, et al. *International Journal of Biological Macromolecules* 242 (2023) 124621. Venturi, et al. *Food Hydrocolloids* 161 (2025) 110863

[2] Mezzenga, et al, *Rep. Prog. Phys.* 76 (2013) 046601

[3] Zanni et al, *J. Phys. Chem. B* (2015), 119, 14065–14075. Buchanan, et all *J. Phys. Chem. B* (2025), 129, 8360–8367

[4] Zanni, et al. *J. Phys. Chem. B* (2018), 122, 144–153

[5] Tumbic, et al. *Ann. Rev.* (2021), 299–321