

AI-Enabled Raman Spectroscopy for Precision Diagnosis and Therapy

Juergen Popp

¹Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany

²Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745 Jena, Germany

Raman spectroscopy combined with artificial intelligence (AI) is emerging as a powerful tool for precision diagnostics and therapy guidance. Vibrational spectroscopic techniques provide label-free, molecularly specific information from biological samples, while AI enables robust pattern recognition, quantification, and clinical interpretability. This lecture presents recent advances in AI-assisted Raman spectroscopy for intraoperative tumor diagnosis and infectious disease management. Particular emphasis is placed on translating vibrational spectroscopic data into real-time clinical decision support. Strategies to integrate Raman-based technologies into routine clinical workflows and to bridge the gap between laboratory development and clinical application will be discussed.

Acknowledgements

Financial support of the EU, the "Thüringer Ministerium für Wirtschaft, Wissenschaft und Digitale Gesellschaft", the "Thüringer Aufbaubank", the Federal Ministry of Research, Technology and Space (BMFTR), the German Science Foundation, the Fonds der Chemischen Industrie and the Carl Zeiss Stiftung.