

Resonance Raman Spectroscopy with infrared lasers: Novel Insights into 2D Materials

Simone Sotgiu^a, Tommaso Venanzi^b, Muralidhar Nalabothula^c, Elena Stellino^d, Erica

Fragomeni^{a,d}, Alessandro Nucara^a, Michele Ortolani^a, Ludger Wirtz, and ^{}Leonetta Baldassarre ^a*

^a Department of Physics, Sapienza University of Rome, 00185 Rome, Italy

^b Center for Life Nano-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy.

^c Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg.

^d Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00185 Rome, Italy.

** leonetta.baldassarre@uniroma1.it*

Resonance Raman spectroscopy has been instrumental in advancing our understanding of semiconductor physics [1] and has since become a key tool for the study of two-dimensional materials [2]. By examining the intensity, linewidth, and excitation-energy dispersion of Raman peaks, valuable information on structural properties, vibrational modes, and electronic structure can be obtained [3]. Although infrared excitation poses challenges due to the reduced Raman cross-section of non-resonant peaks, resonant Raman spectroscopy in this regime enables the selective probing of low-energy carrier scattering processes, such as those involving electrons in narrow-gap semiconductors and Dirac materials including graphene [4, 5] and Weyl semimetals.

We investigate scattering processes in MoTe₂ crystals near its indirect bandgap. To this aim we have employed a custom-built Raman microscopy setup working with excitation at 0.8 eV, a wavelength seldom used for Raman spectroscopy. Supported by *ab initio* calculations of second-order Raman features, we identify the phonon branches involved in the scattering processes and show that second-order Raman modes are resonantly enhanced when the laser energy approaches the bandgap, while first-order modes remain non-resonant. Together with previous results obtained in graphene [4,5], these results suggest that resonance Raman spectroscopy with excitation energies in the infrared can provide deeper insight into low-energy carrier scattering channels in infrared-gap semiconductors, as well as in semimetals and topological insulators.

References

- [1] M. Cardona, Light Scattering in Solids II ed M. Top. Appl. Phys. 50, 117 (1982)
- [2] X. Zhang, *et al.*, Chem. Soc. Rev. **44**, 2757 (2015)
- [3] P. Venezuela, M. Lazzeri, and F. Mauri, Phys. Rev. B **84**, 035433 (2011)
- [4] T. Venanzi, *et al.*, Phys. Rev. Lett **130**, 256901 (2023)
- [5] L. Graziotto *et al.*, Nano Lett **24**, 1867 (2024)