

Unveiling CO₂-derived species adsorbed on TiO₂ through the synergistic combination of Density Functional Theory (DFT) and Vibrational Spectroscopy

***Michele Speziani**^{a,b,c}, **Marco Cazzaniga**^d, **Michele Ceotto**^d, **Ivano Alessandri**^{a,c,e}

^aINSTM-UdR Brescia, via Branze 38, 25123 Brescia, Italy

^bDepartment of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy

^cCNR-INO, UdR Brescia, via Branze 45, 25123, Brescia, Italy

^dDepartment of Chemistry, University of Milan, via Golgi 19, 20133 Milan, Italy

^eDepartment of Information Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy

* michele.speziani@unibs.it

Keywords: DFT, CO₂ adsorption, TiO₂

Titanium dioxide (TiO₂) is widely recognized as a next-generation metal oxide catalyst due to its photocatalytic activity, economic viability, and environmental friendliness. Anatase represents the most common TiO₂ crystal phase investigated and employed for remediation purposes, although its capability to adsorb target molecules strongly depends on the exposed crystal facet. (001) anatase is one of the most reactive surfaces, and its ability to chemisorb CO₂ has been demonstrated by several studies. Its presence in commercial TiO₂ as exposed facet is limited in favour of others, mainly the more stable (101). Identifying the specific adsorption geometry remains a challenge as the configuration and the orientation of the adsorbate compounds with respect to the surface are difficult to address. This study proposes a novel approach to solve this issue, combining Density Functional Theory (DFT) simulations with Fourier Transform InfraRed (FTIR) and Raman spectroscopies to enable the investigation of adsorbates on (001) anatase. Simulations revealed a typical and almost exclusive behaviour of this crystal plane driven by its interaction with water molecules, which play a fundamental role in the CO₂ adsorption. Measurements conducted on samples synthesized and treated accordingly with the computational results confirmed the theoretical predictions, as new spectral features were observed and associated with carbonates and bicarbonates, presumably formed upon CO₂ adsorption.

On the other hand, (001) anatase poses problems in terms of industrial scalability, due to the synthesis recipes reported in the literature, which employ toxic and potentially dangerous compounds and procedures, such as hydrofluoric acid and isopropanol at hydrothermal conditions. Consequently, new structures were considered starting from commercial TiO₂ and treated by solutions of metal hydroxides. Simulations revealed the possibility to obtain almost the same kind of (bi)carbonate structures observed on (001) anatase but on a (101) anatase enriched by Ca²⁺. Thus, a new synthesis including Degussa P25 (commercial TiO₂) impregnated in a Ca(OH)₂ solution at low concentration was proposed, with a synthesis process potentially scalable. The combination of DFT and Raman spectroscopy confirmed the presence of bicarbonates on this surface, at frequencies slightly shifted with respect to the one observed for the stoichiometric (001) anatase.

Although the work is still ongoing, these investigations provide valuable insights into the behaviour of the materials, confirming the synergistic ability of DFT and vibrational spectroscopy to address adsorbates, also representing a novel approach to achieve detailed surface descriptions.

References

- [1] L. Mino, G. Spoto, A. M. Ferrari, CO₂ capture by TiO₂ anatase surfaces: A combined DFT and FTIR study, *Journal of Physical Chemistry C*, **2014**, 10, vol. 118, no. 43, pp. 25016–25026
- [2] Dankar J., Pagis C. Rivallan M., El-Roz M., *Operando* FTIR study of the photocatalytic reduction of CO₂ in the presence of water vapor over Pt/TiO₂: on the role of surface residual C-species, *Sustainable Energy Fuels*, **2023**, 7, 2819–2823