

Raman-based biochemical fingerprinting of plasma extracellular particles in breast cancer

***Arianna Bonizzi¹, Roberta Cazzola², Marta Truffi¹, Francesca Piccotti¹, Sara Albasini¹, Fabio Corsi^{1,2}, and Carlo Morasso¹**

1. *Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy*

2. *Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi, 74, 20157 Milan, Italy*

***arianna.bonizzi@icsmaugeri.it**

Keywords:

Lipoproteins, Extracellular vesicles, Raman Spectroscopy, Breast Cancer

Biological fluids contain a heterogeneous population of circulating biogenic nanoparticles that differ in size, density, and molecular composition. Among these, lipoproteins (LPs) are essential for transporting hydrophobic lipids such as cholesterol and triglycerides [1]. Extracellular vesicles (EVs), are lipid bilayer particles released under physiological and pathological conditions, that serve as critical mediators of intercellular communication by transporting biological macromolecules such as lipids, proteins, and nucleic acids. Over the past decade, EVs have gained considerable attention as promising liquid biopsy-based biomarkers for cancer, particularly breast cancer (BC) [2]. Despite encouraging evidence, the reliable use of EVs as disease biomarkers requires rigorous isolation and characterization procedures to ensure an accurate assessment of their biological nature and clinical relevance, as LPs are frequently co-isolated with EVs.

Here, we propose Raman spectroscopy (RS) as a tool to characterize the biochemical composition of circulating extracellular particles (EPs)—including LPs and EVs [3,4]. First, we assessed the ability of RS to detect compositional differences among EPs obtained from human plasma by ultracentrifugation. Then we evaluated whether RS could provide quantitative information on major biomolecular classes by comparing RS data with traditional biochemical assays. Lastly, we investigated biochemical differences in plasma-derived EVs between healthy controls (HC, n=30) and BC patients (BC, n=34) to identify disease-associated spectral signatures

Our results show that consistent Raman bands can be detected across circulating EPs and that their intensities enable an effective discrimination of EVs from LPs and also among the main subtypes of both groups. Good agreement was also observed between RS and biochemical assays for all biomolecules, confirming that RS can rapidly and cost-effectively provide structural information on EPs composition, complementing traditional assays. At last, RS identified a distinct biochemical signature associated with BC, characterized by increased signals from nucleic acids and lipids, underscoring its potential as a valuable diagnostic tool.

References

- [1] E.D. Michos, J.W. McEvoy, R.S. Blumenthal. Lipid management for the prevention of atherosclerotic cardiovascular disease. *N. Engl. J. Med.* **2019**, *381* (16), pp. 1557-1567.
- [2] Y. Lee, J. Ni, J. Beretov, V.C. Wasinger, P. Graham, Y. Li. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. *Mol. Cancer* **2023**, *22*, 33.
- [3] A. Bonizzi, F. Magri, S. Mazzucchelli, M. Truffi, A. Rizzi, F. Corsi, R. Cazzola, C. Morasso. Determination of the quality of lipoproteins by Raman spectroscopy in obese and healthy subjects. *Analyst* **2023**, *148*, 2012–2020.
- [4] A. Bonizzi, L. Signati, M. Grimaldi, M. Truffi, F. Piccotti, S. Gagliardi, G. Dotti, S. Mazzucchelli, S. Albasini, R. Cazzola, D. Bhowmik, C. Narayana, F. Corsi, C. Morasso. Exploring breast cancer-related biochemical changes in circulating extracellular vesicles using Raman spectroscopy. *Biosensors and Bioelectronics*, **2025**, *278*, 117287.